3.42 \(\int (b \tan ^p(c+d x))^n \, dx\)

Optimal. Leaf size=59 \[ \frac{\tan (c+d x) \left (b \tan ^p(c+d x)\right )^n \, _2F_1\left (1,\frac{1}{2} (n p+1);\frac{1}{2} (n p+3);-\tan ^2(c+d x)\right )}{d (n p+1)} \]

[Out]

(Hypergeometric2F1[1, (1 + n*p)/2, (3 + n*p)/2, -Tan[c + d*x]^2]*Tan[c + d*x]*(b*Tan[c + d*x]^p)^n)/(d*(1 + n*
p))

________________________________________________________________________________________

Rubi [A]  time = 0.0392326, antiderivative size = 59, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 12, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.25, Rules used = {3659, 3476, 364} \[ \frac{\tan (c+d x) \left (b \tan ^p(c+d x)\right )^n \, _2F_1\left (1,\frac{1}{2} (n p+1);\frac{1}{2} (n p+3);-\tan ^2(c+d x)\right )}{d (n p+1)} \]

Antiderivative was successfully verified.

[In]

Int[(b*Tan[c + d*x]^p)^n,x]

[Out]

(Hypergeometric2F1[1, (1 + n*p)/2, (3 + n*p)/2, -Tan[c + d*x]^2]*Tan[c + d*x]*(b*Tan[c + d*x]^p)^n)/(d*(1 + n*
p))

Rule 3659

Int[(u_.)*((b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_), x_Symbol] :> Dist[(b^IntPart[p]*(b*(c*Tan[e + f*x
])^n)^FracPart[p])/(c*Tan[e + f*x])^(n*FracPart[p]), Int[ActivateTrig[u]*(c*Tan[e + f*x])^(n*p), x], x] /; Fre
eQ[{b, c, e, f, n, p}, x] &&  !IntegerQ[p] &&  !IntegerQ[n] && (EqQ[u, 1] || MatchQ[u, ((d_.)*(trig_)[e + f*x]
)^(m_.) /; FreeQ[{d, m}, x] && MemberQ[{sin, cos, tan, cot, sec, csc}, trig]])

Rule 3476

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[x^n/(b^2 + x^2), x], x, b*Tan[c + d
*x]], x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 364

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a^p*(c*x)^(m + 1)*Hypergeometric2F1[-
p, (m + 1)/n, (m + 1)/n + 1, -((b*x^n)/a)])/(c*(m + 1)), x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rubi steps

\begin{align*} \int \left (b \tan ^p(c+d x)\right )^n \, dx &=\left (\tan ^{-n p}(c+d x) \left (b \tan ^p(c+d x)\right )^n\right ) \int \tan ^{n p}(c+d x) \, dx\\ &=\frac{\left (\tan ^{-n p}(c+d x) \left (b \tan ^p(c+d x)\right )^n\right ) \operatorname{Subst}\left (\int \frac{x^{n p}}{1+x^2} \, dx,x,\tan (c+d x)\right )}{d}\\ &=\frac{\, _2F_1\left (1,\frac{1}{2} (1+n p);\frac{1}{2} (3+n p);-\tan ^2(c+d x)\right ) \tan (c+d x) \left (b \tan ^p(c+d x)\right )^n}{d (1+n p)}\\ \end{align*}

Mathematica [A]  time = 0.0477217, size = 57, normalized size = 0.97 \[ \frac{\tan (c+d x) \left (b \tan ^p(c+d x)\right )^n \, _2F_1\left (1,\frac{1}{2} (n p+1);\frac{1}{2} (n p+3);-\tan ^2(c+d x)\right )}{d n p+d} \]

Antiderivative was successfully verified.

[In]

Integrate[(b*Tan[c + d*x]^p)^n,x]

[Out]

(Hypergeometric2F1[1, (1 + n*p)/2, (3 + n*p)/2, -Tan[c + d*x]^2]*Tan[c + d*x]*(b*Tan[c + d*x]^p)^n)/(d + d*n*p
)

________________________________________________________________________________________

Maple [F]  time = 12.661, size = 0, normalized size = 0. \begin{align*} \int \left ( b \left ( \tan \left ( dx+c \right ) \right ) ^{p} \right ) ^{n}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*tan(d*x+c)^p)^n,x)

[Out]

int((b*tan(d*x+c)^p)^n,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (b \tan \left (d x + c\right )^{p}\right )^{n}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(d*x+c)^p)^n,x, algorithm="maxima")

[Out]

integrate((b*tan(d*x + c)^p)^n, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\left (b \tan \left (d x + c\right )^{p}\right )^{n}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(d*x+c)^p)^n,x, algorithm="fricas")

[Out]

integral((b*tan(d*x + c)^p)^n, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (b \tan ^{p}{\left (c + d x \right )}\right )^{n}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(d*x+c)**p)**n,x)

[Out]

Integral((b*tan(c + d*x)**p)**n, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (b \tan \left (d x + c\right )^{p}\right )^{n}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*tan(d*x+c)^p)^n,x, algorithm="giac")

[Out]

integrate((b*tan(d*x + c)^p)^n, x)